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● Introduction and Motivation
– Stochastic Media and Markovian Geometry Distribution

– LP Closure

● Problem Models
– Statistically Representative Cube Problem

– Single Sphere Problems

– Sphere Column Problems

– Homogenization Models

● Results & Conclusion
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 Implicit randomness in material geometries

– Astrophysical clouds in interstellar media, pebble-bed reactors, ICF

 Material distribution can change with time or space
– Turbulence, radiation transport, stochastic processes

 Volume fraction of materials based on mean chord length
– Markovian referring to

Poisson statistics

 Homogenization methods (e.g. atomic mix) for solving transport do 
not generally provide accurate answers

– Less opaque regions with a high degree of particle streaming tend to be under-
represented

A Stochastic Markovian Media
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● A three-dimensional system of spheres randomly positioned 
in a uniform background material
– Spheres of higher opacity material (characteristically less prevalent)

– Background of lower opacity

● For non-overlapping spheres, chord length distribution is 
approximately exponential

● Statistically approximates a
Markovian distribution
– Boundary layer effect,

few small chord lengths

– Dilute material
~10% volume fraction or less

Statistically Representative Geometry

Olson, Gordon L., Miller, David S., Larsen, Edward W., & Morel, Jim E. (2006). 
Chord length distributions in binary stochastic media in two and three dimensions. 
Journal of Quantitative Spectrosopy & Radiative Transfer 101, 269-283.
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● Two material-dependent linear transport equations
– Closure in the form of a particle streaming term from one material to 

the next

● Angular flux in the system provided by the ensemble average

● Widespread use in applications where a simpler atomic
mix approximation is unacceptably inaccurate

Levermore-Pomraning (LP) Closure
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Prinja, Anil K., Olson, Gordon L. (2003). Grey radiative transfer in binary statistical 
media with material temperature coupling: asymptotic limits. Los Alamos National 
Laboratory, LA-UR-03-1883.
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● A one-dimensional S
N
 model was developed for suites of 

benchmark problems
– 5 x 105 geometric realizations for the “exact” solution

Typical Result:

Thickness = 10.0

Isotropic source at left face

Prior Work in Testing LP Closure

Parameter Material 1 Material 2
σ

t
2/101 200/101

σ
s
/σ

t
0.00 1.00

λ 101/20 101/20
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● Original problem described by Gordon Olson (2007)

– Comparison problem via Todd Urbatsch (2008) – three wave fronts in problem

● Radius of spheres based on mean chord length

● Number of spheres based on volume fraction

– Unit cell volume (V
c
 = 1 cm3)

Building the Representative Geometry

r=
3
4

λ2=0.0225cm

N=
V c p1

4
3

π r3
=2096

λ1=0.27,λ2=0.03⇒ p1=0.9, p2=0.1

Olson, Gordon L (2007). Gray radiation transport in multi-dimensional stochastic 
binary media with material temperature coupling. Journal of Quantitative 
Spectrosopy & Radiative Transfer 104, 86-98.
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● Physical values normalized

– (specific heat, density, etc.); r = 0.5 cm

● Exposed to 5 mean free paths of background (sides)

– 2 mean free paths of background (front & back)

               T
0
 = 0.01 eV T

s
 = 1.0 eV

–

                                         σ
1
 = 10-10             σ

2
 = 1.0

Modeling a Single Sphere
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Effects of Opacity on Reverse Shine

σ
1
 = 1.0

σ
2 
= 50.0
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● Same physical parameters used in single sphere analysis
– Reflective boundary conditions

– Extensions to phase space: number of spheres, volume fraction
● Consequently, less opacity ratios

Modeling a Sphere Column

p2=0.05 σ1=1.0,σ2=5.0
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● Slight depression from increasing sphere opacities in low volume fraction, 
p

2
 = 0.05 (larger opacities require more computational time)

– No noticeable differences in forward-bias of angular fluence distributions

● Overall loss primarily due to problem length

– Differences seem to be due to “effective opacity” increase

● Fluences measured at exit as fraction of entrance fluence

Fluence Depression

σ1=1.0
σ2=1.0 σ2=100.0 σ2=1.0 σ2=100.0

p2=0.05
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● For a larger volume fraction, p
2
 = 0.2

– Angular distribution of system is largely preserved

– Fluence depression caused by greater “effective opacity” increase

● Fluences measured at exit as fraction of entrance fluence

Fluence Depression

σ2=1.0 σ2=100.0 σ2=1.0 σ2=100.0

p2=0.2 σ1=1.0
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● Three waves seen in original cube problem
– Wave along front of spheres

– Wave along background

– Wave along back of spheres

● Diffusion theory for a one-dimensional Marshak wave predicts the 
wavefront calculated as:

– Term added to account for isotropic emission from blackbody in three 
dimensions

● Attempt to fit equation to data in sphere column problems

Effective Wave Speeds

x f=√ 8
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Hammer, James H., Rosen, Mordecai D. (2003). A consistent approach to solving 
the radiation diffusion equation. Physics of Plasmas 10:5, 1829-1845.
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Effective Wave Speeds

σ2=1.0 σ2=10.0 σ2=100.0

p2=0.05

p2=0.2
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Energy Deposition Comparison

p2=0.2

p2=0.05

σ2=1.0 σ2=10.0 σ2=100.0
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 Angular fluence is largely unaffected – probably screening from background

Volume Fraction Analysis

p2=10−6

σ2=50

σ1=1

p2=10−1 p2=10−2 p2=10−6

p2=10−1
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● Atomic mix: an ensemble averaged absorption opacity

● LP homogenized model
– Correlation length

– Modified opacities

– Standard deviation of opacity

– Effective absorption and scattering opacities

– Use provides ensemble averaged particle flux

Homogenization Models

⟨σa⟩=p1σ1+ p2σ2

1
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~σ=p1σ2+p2σ1 σ̂=~σ+
1
λc

ν=√ p1 p2|σ2−σ1|
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2

σ̂
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Prinja, Anil K., Olson, Gordon L. (2003). Grey radiative transfer in binary statistical 
media with material temperature coupling: asymptotic limits. Los Alamos National 
Laboratory, LA-UR-03-1883.
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Transmission Comparisons

● Differences apparent at high opacity ratios

– σ
1
 = 1.0 , all problems run to same time (10-8 s)

– Sphere column lattice provides reasonable approximation of energy 
transmission

– Homogenized media perform worse
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● Forward-bias evident on sphere column lattice
– Due to obvious streaming paths between spheres

– Homogenized problems under-represent transmission, and also 
forward-bias of cube problem

Angular Transmission Comparison
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Wave Speed of Stochastic Cube

● Effective opacities continue to be over-computed
– Waves seem to propagate linearly, at least initially

– Possibly boundary effects on shape

σ2=1.0 σ2=10.0 σ2=100.0
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● Sphere column with reflective conditions to form a lattice 
is a good (deterministic) approximation to a stochastic 
media if looking at total energy transmission
– To preserve angular transmission, other lattice types may 

require analysis (e.g. body-centered-cubic cells)

● There are likely other factors that play into the wave 
propagation besides an effective opacity
– At least with respect to a one-dimensional diffusion model

Conclusions
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● Questions?

● Comments?

● Advice?

The End
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The application of transport solution methodology such as the Implicit Monte Carlo method to a 
stochastic binary media has been the subject of research interest for several decades. A common 
implementation of a closed-form model for accurate prediction of radiation transport is the Levermore-
Pomraning (LP) model, coupling independent transport equations through a material streaming term. 
However, the LP model is inaccurate in regimes of material chord lengths larger than the scale of an 
atomic mixture, or simple volume fraction average.

As motivation for the development of a more accurate closure model, a statistical representation of 
binary media in a three-dimensional Markovian distribution has been modeled, involving the random 
distribution of optically thick spherical media within an optically thin cube. The radiation hydrodynamics 
code Cassio was used to simulate a thermal radiation wave incident on the spheres within this 
representative model. Elements of the problem were isolated and modeled in varying parameters of 
phase space, with the intention of providing data for use in future attempts to characterize the problem 
domain.

Abstract
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Center of Heating with Differing Opacities

● Higher background 
opacity shows a 
larger “asymptote”
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